PMA Prozeß- und Maschinen-Automation GmbH

Temperaturwächter TB 40-1

Mehr Effizienz beim Engineering, mehr Übersicht im Betrieb: Die Projektierungsumgebung für die BluePort[®]-Regler

Erklärung der Symbole im Text:

auf dem Gerät:

i Information allgemein

A Bedienungsanleitung beachten

- Marnung allgemein
- Achtung: ESD-gefährdete Bauteile

© PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany Alle Rechte vorbehalten. Ohne vorhergehende schriftliche Genehmigung ist der Nachdruck oder die auszugsweise fotomechanische oder anderweitige Wiedergabe diese Dokumentes nicht gestattet.

Dies ist eine Publikation von PMA Prozeß- und Maschinen Automation Postfach 310229 D-34058 Kassel Germany

Inhaltsverzeichnis

1	Montage
2	Elektrischer Anschluß
2.1	Anschlußbild
2.2	Anschluß der Klemmen
3	Bedienung
3.1	Frontansicht
3.2	Verhalten bei Netz Ein
3.3	Verhalten bei Fühlerbruch / Meßkreisfehler
3.4	Einstellen des Grenzwertes LC / Erweiterte Bedienebene 8
3.5	Wartungsmanager / Errorliste
3.6	Alarmverarbeitung
3.6.1	Alarmverarbeitung LC-Grenzwert
3.6.2	Alarmverarbeitung der Zusatzalarme
3.7	Bedienstruktur
4	Konfigurier-Ebene
4.1	Konfigurations-Übersicht
4.2	Konfigurier-Parameter
5	Parameter-Ebene
5.1	Parameter-Übersicht
5.2	Parameter
5.3	Eingangs-Skalierung $i n P.1$
6	Kalibrier-Ebene
7	Ausführungen
8	BlueControl
9	Technische Daten
10	Sicherheitshinweise
10.1	Rücksetzen auf Werkseinstellung

1 Montage

Sicherheitsschalter:

Zum Zugriff auf die Sicherheitsschalter muß der Regler unter leichtem Drücken oben und unten mit kräftigem Zug an den Aussparungen des Frontrahmens aus dem Gehäuse gezogen werden

10V ↔mA/Pt	rechts 1	Stromsignal / Pt100 / Thermoelement an 1 nP. 1
	links	Spannungssignal an 1 n.P. 1
Loc	offen	Zugang zu allen Ebenen gesperrt
	geschlossen 1	alle Ebenen über Passwort PR55 zugänglich

• Auslieferzustand

Achtung! Das Gerät enthält ESD-gefährdete Bauteile.

- * Sicherheitsschalter $mA \leftrightarrow V$ in Stellung links
- (\mathbf{i})
- Der TB40-1 verfügt, je nach Bestellung, über:
 - Flachsteckmesser 1 x 6,3 mm / 2 x 2,8 mm nach DIN 46 244
 - Schraubklemmen für Leiterquerschnitt von 0,5 bis 2,5 mm²

2.2 Anschluß der Klemmen

Anschluß der Hilfsenergie 1

Siehe Kapitel "Technische Daten"

Anschluß des Eingangs INP1 **2**

Eingang für den Istwert:

- a Thermoelement
- **b** Widerstandsthermometer (Pt100/ Pt1000/ KTY/ ...)
- **c** Strom (0/4...20mA)
- **d** Spannung (0/2...10V)

Anschluß des Eingangs di1 3

Digitaler Eingang, konfigurierbar als Schalter oder Taster.

Anschluß des Ausgangs LC 4

Relais (250V/2A), potential freier Wechsler

Anschluß der Ausgänge OUT1/2 5

 \triangle

Relaisausgänge 250V/2A als Schließer mit gemeinsamen Kontaktanschluß. Die Voralarme (OUT1/2) dürfen nur zur Signalisierung und nicht zur Regelung benutzt werden!

Anschlußbeispiel TB40-1 mit KS40-1:

3 Bedienung

3.1 Frontansicht

Farben der LEDs:LED 1, 2, LC:gelbLED OK:grünsonstige LED:rot

In der oberen Anzeige wird <u>immer</u> der Istwert angezeigt (Ausnahme: Lonf / othr/d.5P = D). In der Parameter-, Konfigurier- und Kalibrier-Ebene sowie der erweiterten Bedienebene wechselt die untere Anzeige zyklisch zwischen dem Parameter-Namen und dem Parameter-Wert.

3.2 Verhalten bei Netz Ein

Nach Einschalten der Hilfsenergie startet das Gerät mit der **Bedien-Ebene**. Es wird der Betriebszustand angenommen der vor Netzunterbrechung aktiv war.

3.3 Verhalten bei Fühlerbruch / Meßkreisfehler

Wird ein Fühlerbruch / Meßkreisfehler erkannt, wechselt die Istwertanzeige auf FAIL und die Err-LED blinkt. (-> Seite 11 Kapitel 3.5 Wartungsmanager / Errorliste). Es gelten alle konfigurierten Alarmgrenzen als verletzt, die entsprechenden Ausgänge werden geschaltet. Die OK-LED erlischt und der LC Ausgang wird geöffnet.

3.4 Einstellen des Grenzwertes LC / Erweiterte Bedienebene

3.5 Wartungsmanager / Errorliste

Am Anfang der erweiterten Bedienebene steht immer, falls ein oder mehrere Fehler vorhanden sind, die Errorliste. Ein aktueller Eintrag in der Errorliste (Alarm, Fehler) wird durch die Err-LED im Display angezeigt. Zur Anzeige der Error-Liste muß die ⊡-Taste betätigt werden.

Err-LED- Status	Bedeutung	weiteres Vorgehen
blinkt	Alarm steht an, Fehler vorhanden	 in Errorliste über Fehler-Nummer die Fehler-Art bestimmen Fehler beseitigen
leuchtet	Fehler beseitigt, Alarm nicht quittiert	 in Errorliste Alarm durch Drücken der RESET -Taste oder durch digitalen Eingang dil quittieren → CooF/LOGI/Err.r Alarmeintrag ist damit gelöscht
aus	kein Fehler, alle Alarmeinträge gelöscht	

Errorliste:

Name	Beschreibung	Ursache	Mögliche Abhilfe
E. (Interner Fehler, nicht behebbar	- z.B defektes EEPROM	PMA Service kontaktierenGerät einschicken
E.2	Interner Fehler, rücksetzbar	- z.B. EMV-Störung	 Meß- u. Netzleitungen getrennt führen Schütze entstören
F 6 F. 1	Fühlerbruch INP1	 Fühler defekt Verdrahtungsfehler 	INP1 Fühler austauschenINP1 Anschluß überprüfen
5h£.1	Kurzschluß INP1	Fühler defektVerdrahtungsfehler	INP1 Fühler austauschenINP1 Anschluß überprüfen
POL.I	Verpolung INP1	- Verdrahtungfehler	- Verdrahtung INP1 vertauschen
L iñ l	gespeicherter LC-Alarm	- eingestellter LC- Grenzwert verletzt	- Prozeß überprüfen
L 10.2	gespeicherter Alarm 2	- eingestellter Alarm- Grenzwert 2 verletzt	- Prozeß überprüfen
L iñ3	gespeicherter Alarm 3	- eingestellter Alarm- Grenzwert 3 verletzt	- Prozeß überprüfen
InF.1	Zeitgrenzwert- Meldung	- eingestellte Betriebs- stunden erreicht	- Anwendungsspezifisch

Steht ein Alarm noch an d.h. ist die Fehlerursache noch nicht beseitigt (Err-LED blinkt), können gespeicherte Alarme nicht quittiert und damit rückgesetzt werden.

Error-Status:

Error-Status	Bedeutung			
2	anstehender Fehler	nach Fehlerbeseitigung Wechsel zu Error-Status		
1	gespeicherter Fehler	nach Quittierung in Errorliste Wechsel zu Error-Status 🛙		
Ũ	kein Fehler/Meldung	nicht sichtbar, außer bei Quittierung		

3.6 Alarmverarbeitung

3.6.1 Alarmverarbeitung LC-Grenzwert

Wirkungsweise oberer Grenzwert:

(LonF/L, n/Fcn, l = 3)

Wirkungsweise unterer Grenzwert: ([onF/Lin/Fcn.1=4])

3.6.2 Alarmverarbeitung der Zusatzalarme

Es können bis zu zwei zusätzliche Alarme konfiguriert werden und den Ausgängen $\square \bot L$ i und $\square \sqcup L L$ zugeordnet werden. Jeder der 2 Grenzwerte $\bot \square L L$ i L i L i L Z Schaltpunkte $\mathbb{H}.\mathbb{Z}/\mathbb{H}.\mathbb{J}$ (Max) und $\mathbb{L}.\mathbb{Z}/\mathbb{L}.\mathbb{J}$ (Min), die individuell abgeschaltet werden können (Parameter = " $\square F F$ "). Die Schaltdifferenz $\mathbb{H} \mathbb{Y} \mathbb{S}.\mathbb{Z}/\mathbb{H} \mathbb{Y} \mathbb{S}.\mathbb{J}$ jedes Grenzwertes ist einstellbar.

1: Ruhestrom (LonF / Out.x / O.Rct = 1) 2: Arbeitsstrom (LonF / Out.x / O.Rct = 0)

Die Voralarme dürfen nur zur Signalisierung und nicht zur Regelung benutzt werden!

Es stehen die folgenden Größen zur Verfügung:

- Istwert
- Regelabweichung xw (Istwert LC-Grenzwert (LC)

3.7 Bedienstruktur

Nach Einschalten der Hilfsenergie startet das Gerät mit der **Bedien-Ebene**. Es wird der Betriebszustand angenommen der vor Netzunterbrechung aktiv war.

- **PRrR** Ebene: Die **PRrR** Ebene wird durch das *Leuchten* des rechten Dezimalpunktes der oberen Anzeige signalisiert.
- **Lonf** Ebene: Die **Lonf** Ebene wird durch das *Blinken* des rechten Dezimalpunktes der oberen Anzeige signalsiert

Alle Ebenen sind nur durch Eingabe des Passworts (**PR55**) zugänglich. Ist der Sicherheitsschalter **Loc** offen, sind alle Ebenen gesperrt.

<u>Auslieferzustand:</u> Sicherheitsschalter Loc geschlossen: alle Ebenen uneingeschränkt zugänglich, Passwort PR55 = 45

Sicherheitss chalter Loc	Passwort mit BluePort® eingegeben	Funktion mit BluePort® blockiert oder frei	Zugriff an der Gerätefront:
zu	OFF / Passwort	blockiert / frei	frei
offen	OFF / Passwort	blockiert	blockiert
offen	OFF	frei	frei
offen	Passwort	frei	frei nach Eingabe des Passworts

4 Konfigurier-Ebene

4.1 Konfigurations-Übersicht

Einstellung:

- die Konfigurationen können mittels der 🔺 🔽 Tasten eingestellt werden
- der Übergang zur nächsten Konfiguration erfolgt durch Betätigung der - Taste
- nach der letzten Konfiguration einer Gruppe erscheint don E in der Anzeige und es erfolgt ein automatischer Übergang zur nächsten Gruppe

Der Rücksprung an den Anfang einer Gruppe erfolgt durch Drücken der – Taste für 3 sec.

4.2 Konfigurier-Parameter

Liñ

Name	Wertebereich	Beschreibung	Default
Fnc.1		Funktion des LC-Grenzwertes	3
	3	Messwertüberwachung + Speicherung des Alarmzustands <i>oberer</i> <i>Grenzwert</i> . Ein gespeicherter Grenzwert kann über die Error Liste, den digitalen Eingang DI1 oder RESET-Taste zurückgesetzt werden (->LBEI/Err.r).	Tw_S
	4	Messwertüberwachung + Speicherung des Alarmzustands <i>unterer</i> <i>Grenzwert</i> . Ein gespeicherter Grenzwert kann über die Error Liste, den digitalen DI1 Eingang oder RESET-Taste zurückgesetzt werden (->L III / Errr.).	TW_S
	5	Meßwertüberwachung oberer Grenzwert (ohneSpeicherung)	TW 1
	6	Meßwertüberwachung unterer Grenzwert (ohne Speicherung)	TW D
Fnc.2		Funktion des Grenzwertes 2/3	0/0
Fnc.3	0	abgeschaltet	
	1	Messwertüberwachung	
	2	Messwertüberwachung + Speicherung des Alarmzustands. Ein gespeicherter Grenzwert kann über die Error Liste, den digitalen Eingang DI1 oder RESET-Taste zurückgesetzt werden (-> L DG1 / Err.r)	
5 r c.2		Quelle für Grenzwert 2 / 3	0/0
5 r c.3	0	Istwert = Absolutalarm	
	1	Istwert - Grenzwert (Relativalarm)	
Hour	OFF999999	Betriebsstunden (nur mit BlueControl sichtbar!)	OFF
Swit	OFF999999	Schaltspielzahl (nur mit BlueControl sichtbar!)	OFF

1 TW: Temperaturwächter TW_S: Temperaturwächter mit gespeichertem Alarm

InP.1

Name	Wertebereich	Beschreibung	Default
5.E Y P		Sensortyp	1
	0	Thermoelement Typ L (-100900°C), Fe-CuNi (DIN)	
	1	Thermoelement Typ J (-1001200°C), Fe-CuNi	
	2 Thermoelement Typ K (-1001350°C), NiCr-Ni		
	3	Thermoelement Typ N (-1001300°C), Nicrosil-Nisil	
	4 Thermoelement Typ S (01760°C), PtRh-Pt10%		
	5	Thermoelement Typ R (01760°C), PtRh-Pt13%	
	6	Thermoelement Typ T (-200400°C), Cu-CuNi	
	7 Thermoelement Typ C (02315°C), W5%Re-W26%Re		
	8	Thermoelement Typ D (02315°C), W3%Re-W25%Re	
	9	Thermoelement Typ E (-1001000°C), NiCr-CuNi	
	10	Thermoelement Typ B (0/1001820°C, PtRh-Pt6%)	
	18	Thermoelement Sonder	

Name	Wertebereich	Beschreibung	Default
	20	Pt100 (-200.0 100,0 °C)	
	21	Pt100 (-200.0 850,0 °C)	
	22	Pt1000 (-200.0850.0 °C)	
	23	Spezial 04500 Ohm (voreingestellt als KTY11-6)	
	24	Spezial 0450 Ohm	
	30	020mA / 420mA 1	
	40	010V/210V 1	
5.L in		Linearisierung (nur bei S.tYP = 23 (KTY 11-6), 24 (0450 Ω), 30 (020mA), 40 (010V) und 41 (0100mV))	0
	0	Keine	
	1	Sonderlinearisierung. Erstellen der Linearisierungstabelle mit dem Engineering Tool möglich. Voreingestellt ist die Kennlinie für KTY 11-6 Temperatursensoren.	
Earr		Meßwertkorrektur / Skalierung	0
	0	Ohne Skalierung	
	1	Offset-Korrektur (in L R L - Ebene)	
	2	2-Punkt-Korrektur (in [RL - Ebene)	
	3	Skalierung (in PR - R - Ebene)	

1 Bei Strom- oder Spannungs-Eingangssignalen muß eine Skalierung vorgenommen werden (siehe Kapitel 5.3)

0u2.1

Name	Wertebereich	Beschreibung	Default
0.8 c E		Wirkungsrichtung von Ausgang OUT1	0
	0	Direkt / Arbeitsstromprinzip	
	1	Invers / Ruhestromprinzip	

0 u Ł.2

Name	Wertebereich	Beschreibung	Default
0.8 c Ł		Wirkungsrichtung von Ausgang 2	0
	0	Direkt / Arbeitsstromprinzip	
	1	Invers / Ruhestromprinzip	

1051

Name	Wertebereich	Beschreibung	Default
Erric		Rücksetzen aller gespeicherten Grenzwert-Alarme	6
	2	DI1	
	6	RESET - Taste	

Name	Wertebereich	Beschreibung	Default	
Unit		Einheit	1	
	0	ohne Einheit		
	1	°C		
	2	°F		
d٩		Dezimalpunkt (max. Nachkommastellen)	0	
	0	Keine Nachkommastelle		
	1	1 Nachkommastelle		
	2	2 Nachkommastellen		
	3	3 Nachkommastellen		
d iSP		Art der Meßwert-Anzeige	1	
	0	keine Meßwert-Anzeige		
	1	volle Anzeigenauflösung		
	2	Anzeigenauflösung = 2 Digits		
	3	Anzeigenauflösung = 5 Digits		
	4	Anzeigenauflösung = 10 Digits		
[.dEL	0200	Modem delay [ms]	0	
FrEq		Umschaltung 50/60 Hz (nur mit BlueControl sichtbar!)	0	
	0	Netzfrequenz 50 Hz		
	1	Netzfrequenz 60 Hz		

othr

Rücksetzen der Geräte-Konfiguration auf Werkseinstellung (Default) → Kapitel 10.1 (Seite 30)

BlueControl - das Engineering-Tool für die BluePort[®] Regler-Serie

Um die Konfiguration und Parametrierung des TB40-1 zu erleichtern, stehen 3 unterschiedliche Engineering-Tools mit abgestufter Funktionalität zur Verfügung (siehe Kapitel 7: *Zusatzgeräte mit Bestellangaben*).

Neben der Konfigurierung und Parametrierung dient BlueControl (Engineering-Tool) zur Datenerfassung und bieten Archivierungs- und Druck- funktionen. Die Engineering-Tools werden mittels PC und einem PC-Adapter über die Front-Schnittstelle mit dem TB40-1 verbunden.

Beschreibung BlueControl: siehe Kapitel 8: BlueControl (Seite 24)

5 Parameter-Ebene

5.1 Parameter-Übersicht

Einstellung:

- die Parameter können mittels der ▲▼ Tasten eingestellt werden
- nach dem letzten Parameter einer Gruppe erscheint don E in der Anzeige und es erfolgt ein automatischer Übergang zur nächsten Gruppe

Der Rücksprung an den Anfang einer Gruppe erfolgt durch Drücken der – Taste für 3 sec.

Erfolgt 30 sec. keine Tastenbetätigung, kehrt der Regler wieder in die Istwert-Sollwert-Anzeige zurück (Time Out = 30 sec.)

5.2 Parameter

Liñ

Name	Wertebereich	Beschreibung	Default
LE	-19999999	Grenzwert LC	100
1.2	-19999999	unterer Grenzwert 2	OFF
X.2	-19999999	oberer Grenzwert 2	OFF
X Y 5.2	099999	Hysterese von Grenzwert 2	1
L.3	-19999999	unterer Grenzwert 3	OFF
X.3	-19999999	oberer Grenzwert 3	ØFF
XY5.3	099999	Hysterese von Grenzwert 3	1

InP.1

Name	Wertebereich	ch Beschreibung	
InL.	-19999999	⁹⁹ Eingangswert des unteren Skalierungspunktes	
Out.1	L. I -19999999 Anzeigewert des unteren Skalierungspunktes		0
1 nX (-19999999	Eingangswert des oberen Skalierungspunktes	
0 u X. (-19999999	Anzeigewert des oberen Skalierungspunktes	20
£.F (-19999999	Filterzeitkonstante [s]	0,5

r n D

Na	ime	Wertebereich	Beschreibung	Default
r	n 6.L	-19999999	Untere Einstellgrenze für Grenzwert LC	-1999
r	n 6.X	-19999999	Obere Einstellgrenze für Grenzwert LC	9999

$\textcircled{l} \textbf{Rücksetzen der Geräte-Konfiguration auf Werkseinstellung (Default)} \rightarrow \textbf{Kapitel 10.1 (Seite 30)}$

5.3 Eingangs-Skalierung 1 nP. (

Parameter $I \cap L$, $I \cup L$, $I \cap H$, $I \cup I$, $I \cup H$,

Werden Strom- oder Spannungssignale als Eingangsgrößen für $l \cap P$. l verwendet, muß in der Parameter-Ebene eine Skalierung der Eingangs- und Anzeigewerte erfolgen. Die Angabe des Eingangswertes des unteren und oberen Skalierpunktes erfolgt in der jeweiligen elektrischen Größe (mA/V).

5.E YP	Eingangssignal	InL.I	Out.(l nH. l	0 u X. (
30	0 20 mA	0	beliebig	20	beliebig
(020mA)	4 20 mA	4	beliebig	20	beliebig
40	0 10 V	0	beliebig	10	beliebig
(010V)	2 10 V	2	beliebig	10	beliebig

Über diese Einstellungen hinaus können 1 n L. 1 und 1 n H. 1 in dem durch die Wahl von 5.4 4P vorgegebenen Bereich (0...20mA / 0...10V) eingestellt werden.

Soll bei dem Einsatz von Thermoelementen und Widerstandsthermometern (Pt100) die vorgegebene Skalierung benutzt werden, müssen die Einstellungen von InL. I und DuL. I sowie von InH. I und DuH. I übereinstimmen.

Sind Veränderungen der Eingangs-Skalierung in der Kalibrier-Ebene (\rightarrow Seite 20) vorgenommen worden, werden diese in der Eingangs-Skalierung in der Parameter-Ebene dargestellt. Wird die Kalibrierung wieder zurückgesetzt (**UFF**), sind die Skalierungsparameter wieder auf die Default-Einstellung zurückgesetzt.

 $^{(\}mathbf{i})$

A

6 Kalibrier-Ebene

Meßwertkorrektur (ERL) nur sichtbar, wenn EooF / IoP. I / Eorr = I od. 2 gewählt wurde.

Im Kalibrier-Menü (**L**RL) kann eine Anpasssung des Meßwertes durchgeführt werden. Es stehen zwei Methoden zur Verfügung :

2-Punkt-Korrektur ([onF/]oP.[/[orr = 2]):

• mit Istwertgeber offline durchführbar

Offset-Korrektur ($E \cap F / I \cap P$. $I / E \cap r = I$):

- □uL. 1: Hier wird der Anzeigewert des Skalierungspunktes angezeigt. Vor der Kalibrierung ist □uL. 1 gleich 1 nL. 1. Der Bediener kann mit den ▲▼ - Tasten den Anzeigewert korrigieren. Danach bestätigt er den Anzeigewert mit der - Taste.

2-Punkt-Korrektur (LonF/loP.l/Lorr = 2):

- InL.1: Hier wird der Eingangswert des unteren Skalierungspunktes angezeigt. Der Bediener muß mit einem Istwertgeber den unteren Eingangswert einstellen. Danach bestätigt er den Eingangswert mit der ⊡ - Taste.
- □uL. 1: Hier wird der Anzeigewert des unteren Skalierungspunktes angezeigt. Vor der Kalibrierung ist □uL. 1 gleich 1 nL. 1.
 Der Bediener kann mit den ▲▼ - Tasten den unteren Anzeigewert korrigieren. Danach bestätigt er den Anzeigewert mit der - Taste.
- I ∩ H. I: Hier wird der Eingangswert des oberen Skalierungspunktes angezeigt. Der Bediener muß mit dem Istwertgeber den oberen Eingangswert einstellen. Danach bestätigt er den Eingangswert mit der - Taste.
- □ H. I: Hier wird der Anzeigewert des oberen Skalierungspunktes angezeigt. Vor der Kalibrierung ist □ H. I gleich I n H. I.
 Der Bediener kann mit den ▲▼ - Tasten den oberen Anzeigewert korrigieren. Danach bestätigt er den Anzeigewert mit der - Taste.
- Die in der **LRL** Ebene abgeänderten Parameter (**DuL**. **I**, **DuH**. **I**) können wieder zurückgesetzt werden indem die Parameter mit der Dekrement-Taste **v** unter den untersten Einstellwert gestellt werden (**DFF**).

7 Ausführungen

T B 4 0 - 1	000-
Anschluss über Flachsteckmesser0Anschluss über Schraubklemmen1	
90250V AC, 3 Relais TW 0	
24VAC / 1830VDC, 3 Relais TW 1	
Standardkonfiguration	0
Konfiguration nach Angabe	9
Keine Bedienungsanleitung	0
Bedienungsanleitung Deutsch	D
Bedienungsanleitung Englisch	E
Bedienungsanleitung Französisch	F
Standard	0
cULus-zertifiziert (nur mit Schraubklemmen)	U
EN 14597 zertifiziert (ersetzt DIN 3440)	D
Standardausführung	00
Kundenspezifische Ausführung	

Mitgeliefertes Zubehör

Bedienungsanleitung (wenn in Bestellcode ausgewählt)

- •
- 2 Befestigungselemente 15-sprachiger Bedienhinweis •

Zusatzgeräte mit Bestellangaben

Beschreibung			Bestell-Nr.
PC-Adapter für die Frontschnittstelle			9407-998-00001
Normschienenadapter			9407-998-00061
Bedienungsanleitung	Deutsch		9499-040-63418
Bedienungsanleitung	Englisch		9499-040-63411
Bedienungsanleitung	Französisch		9499-040-63432
BlueControl (Engineering-Tool)	Mini	Download	www.pma-online.de
BlueControl (Engineering-Tool)	Basic		9407-999-11001
BlueControl (Engineering-Tool)	Expert		9407-999-11011

8 BlueControl

BlueControl ist die Projektierungsumgebung für die BluePort[®]-Reglerserie von PMA. Folgende 3 Versionen mit abgestufter Funktionalität sind erhältlich:

Funktionalität	Mini	Basic	Expert
Einstellung der Parameter und Konfigurationsparameter	ja	ja	ja
Regler und Regelstreckensimulation	ја	ja	ja
Download: Übertragen eines Engineerings zum Regler	ja	ja	ja
Online-Modus / Visualisierung	nur SIM	ja	ja
Erstellen einer anwenderspezifischen Linerarisierung	ja	ja	ja
Konfiguration der erweiterten Bedienebene	ја	ја	ja
Upload: Lesen eines Engineerings vom Regler	nur SIM	ja	ja
Basisdiagnosefunktion	nein	nein	ja
Datei, Engineering speichern	nein	ja	ja
Druckenfunktion	nein	ja	ja
Onlinedokumentation / Hilfe	ја	ja	ja
Durchführen der Meßwertkorrektur	ja	ja	ja
Datenerfassung und Trendaufzeichnung	nur SIM	ja	ja
Assistentenfunktion	ја	ја	ja
erweiterte Simulation	nein	nein	ja
Programmeditor (nur KS 90-1prog)	nein	nein	ja

Die Mini-Version steht kostenlos zum downloaden auf der PMA Homepage *www.pma-online.de* oder auf der PMA-CD (bitte anfordern) zur Verfügung.

Am Ende der Installation muß die mitgelieferte Lizenznummer angegeben oder DEMO- Modus gewählt werden.

Im DEMO- Modus kann unter Hilfe \rightarrow Lizenz \rightarrow Ändern

die Lizenznummer auch nachträglich eingegeben werden.

9 Technische Daten

EINGANGE

ISTWERTEINGANG INP1

> 14 Bit
0 bis 3 Nachkommastellen
einstellbar 0,0009999 s
100 ms
2-Punkt- oder Offsetkorrektur

Thermoelemente

 \rightarrow Tabelle 1 (Seite 27)

Eingangswiderstand:	$\geq 1 M\Omega$
Einfluß des Quellenwiderstands:	1 μV/Ω

Temperaturkompensation

Maximaler Zusatzfehler: 0.5 K

Bruchüberwachung

Strom durch den Fühler:	≤1µA
Wirkungsweise konfigurierbar	

Widerstandsthermometer

 \rightarrow Tabelle 2 (Seite 27)

Anschlußtechnik:	2- oder 3-Leiter
Leitungswiderstand:	max. 30 Ohm
Meßkreisüberwachung:	Bruch und Kurzschluß

Sondermeßbereich

Mit BlueControl(Engineering-Tool) kann die für den Temperaturfühler KTY 11-6 abgelegte Kennlinie angepaßt werden.

physikalischer Meßbereich:	04500 Ohm
Linearisierungssegmente	16

Strom- und Spannungsmeßbereiche

 \rightarrow Tabelle 3 (Seite 27)

Meßanfang, Meßende:	beliebig innerhalb des Meßbereichs
Skalierung:	beliebig -19999999
Linearisierung:	16 Segmente, anpaßbar mit BlueControl
Dezimalpunkt	einstellbar
Meßkreisüberwachung:	12,5% unter Meßanfang (2mA, 1V)

STEUEREINGANG DI1 (RESET)

Konfigurierbar als Schalter oder Taster! Anschluß eines potentialfreien Kontaktes, der zum Schalten "trockener" Stromkreise geeignet ist. Geschaltete Spannung: 2.5 V Strom: 50 µA

GALVANISCHE TRENNUNGEN

 Sicherheitstrennung Funktionstrennung

Netzanschlüsse	Istwerteingang INP1
	Digitaleingang di l
Relaisausgänge OUT 1,2	
Relaisausgang OUT LC	

AUSGÄNGE

LC RELAISAUSGANG

Funktion:

Unterbrechung der Energiezufuhr bei Überschreitung bzw. Unterschreitung des eingestellten Grenzwertes.

Schaltdifferenz:	0,5°C
Kontaktart:	Potentialfreier Wechsel
Schaltleistung maximal:	500 VA, 250 V, 2A bei 4862
-	Hz,
	ohmsche Last
Schaltleistung minimal:	5V, 10 mA AC/DC
Lebensdauer elektrisch:	600.000 Schaltspiele bei max. Schaltleistung

Relaisausgänge OUT1, OUT2 Funktion:

Zusatzalarme mit MAX, MIN oder MAX+MIN Überwachung mit einstellbarer Hysterese

Überwachbare Signale:

- Istwert (absolut)
- Differenz zum Grenzwert (relativ)
- Fühlerbruch/Kurzschluss

Je nach eingestellter Eingangsart, wird das Eingangssignal auf Bruch, Verpolung und Kurzschluss überwacht

Kontaktart:	2 Schließer mit gemeinsamen Kontaktanschluß
Schaltleistung maximal:	500 VA, 250 V, 2A bei 4862 Hz
Schaltleistung minimal: Lebensdauer elektrisch:	ohmsche Last 6V, 1 mA DC 800.000 Schaltspiele bei max. Schaltleistung

Hinweis:

Bei Anschluß eines Steuerschützes an OUT1...OUT LC ist eine RS-Schutzbeschaltung nach Angaben des Schützherstellers am Schütz erforderlich, um hohe Spannungsspitzen zu vermeiden.

HILFSENERGIE

Je nach Bestellung:

WECHSELSPANNUNG

Spannung:90...250 V ACFrequenz:48...62 HzLeistungsaufnahmeca. 7,3 VA

ALLSTROM 24 V UC

Wechselspannung:20,4...26,4 V ACFrequenz:48...62 HzGleichspannung:18...31 V DCLeistungsaufnahme:ca. 7,3 VA

VERHALTEN BEI NETZAUSFALL

Konfiguration, Parameter und eingestellte Sollwerte, Betriebsart: Dauerhafte EEPROM-Speicherung

BLUEPORT FRONTSCHNITTSTELLE

Anschluss an der Gerätefront über PC-Adapter (siehe "Zusatzgeräte"). Über die BlueControl Software kann der TB40-1 konfiguriert, parametriert und bedient werden.

UMGEBUNGSBEDINGUNGEN

Schutzart

Gerätefront: Gehäuse: Anschlüsse: IP 65 (NEMA 4X) IP 20 IP 00

Zulässige Temperaturen

Betrieb: Anlaufzeit: Grenzbetrieb: Lagerung: 0...60°C ≥ 15 Minuten -20...65°C -40...70°C

Feuchte

75% im Jahresmittel, keine Betauung

Einbauort

Bis zu 2000 m über Normal Null

Erschütterung und Stoß

Schwingung Fc (DIN 68-2-6)

Frequenz:	10150 Hz
im Betrieb:	1g bzw. 0,075 mm
außer Betrieb:	2g bzw. 0,15 mm

Schockprüfung Ea (DIN IEC 68-2-27)

Schock:	15g
Dauer:	11ms

Elektromagnetische Verträglichkeit

Erfüllt EN 61 326-1 (für kontinuierlichen, nicht-überwachten Betrieb)

ALLGEMEINES

Gehäuse

Werkstoff:

Makrolon 9415 schwer entflammbar UL 94 VO, selbstverlöschend

Einschub, von vorne steckbar

Sicherheit

Brennbarkeitsklasse:

Entspricht EN 61010-1 (VDE 0411-1): Überspannungskategorie II Verschmutzungsgrad 2 Arbeitsspannungsbereich 300 V Schutzklasse II

Zulassungen

Typgeprüft nach DIN EN 14597 (ersetzt DIN 3440)

Mit den entsprechenden Fühlern einsetzbar in:

- Wärmeerzeugungsanlagen mit Vorlauftemperaturen bis 120°C nach DIN 4751
- Heißwasseranlagen mit Vorlauftemperaturen von mehr als 110°C nach **DIN 4752**
- Wärmeübertragungsanlagen mit organischen Wärmeträgern nach DIN 4754
- Ölfeuerungsanlagen nach DIN 4755

cULus-Zulassung

(Type 1, indoor use) File: E 208286

Elektrische Anschlüsse

- Elektrische Anschlüsse je nach Bestellung:
 - Flachsteckmesser 1 x 6,3 mm oder 2 x 2,8 mm nach DIN 46 244
 - Schraubklemmen für Leiterquerschnitt von 0,5 bis 2,5 mm²

Montage

Tafeleinbau mit je zwei Befestigungselementen oben/unten oder rechts/links, Dicht an Dicht-Montage möglich

Gebrauchslage:	beliebig
Gewicht:	0,27kg

Mitgeliefertes Zubehör

Bedienungsanleitung Befestigungselemente

Ther	moelementtyp	Meßbereich		Genauigkeit	Auflösung (\emptyset)
L	Fe-CuNi (DIN)	-100900°C	-1481652°F	≤ 2K	0,1 K
J	Fe-CuNi	-1001200°C	-1482192°F	≤ 2K	0,1 K
K	NiCr-Ni	-1001350°C	-1482462°F	$\leq 2K$	0,2 K
N	Nicrosil/Nisil	-1001300°C	-1482372°F	≤ 2K	0,2 K
S	PtRh-Pt 10%	01760°C	323200°F	≤ 2K	0,2 K
R	PtRh-Pt 13%	01760°C	323200°F	$\leq 2K$	0,2 K
Т	Cu-CuNi	-200400°C	-328752°F	≤ 2K	0,05 K
С	W5%Re-W26%Re	02315°C	324199°F	≤ 2K	0,4 K
D	W3%Re-W25%Re	02315°C	324199°F	$\leq 2K$	0,4 K
Е	NiCr-CuNi	-1001000°C	-1481832°F	$\leq 2K$	0,1 K
B*	PtRh-Pt6%	0(100)1820°C	32(212)3308°F	$\leq 2K$	0,3 K

Tabelle 1 Thermoelementmeβbereiche

* Angaben gelten ab 400°C

Tabelle 2 Widerstandsgebermeßbereiche

Art	Meßstrom	Meßbereich		Genauigkeit	Auflösung (\emptyset)
Pt100	- 0,2mA	-200100°C	-140212°F	≤ 1K	0,1K
Pt100		-200850°C	-1401562°F	$\leq 1 \mathrm{K}$	0,1K
Pt1000		-200850°C	-140392°F	$\leq 2K$	0,1K
KTY 11-6*		-50150°C	-58302°F	≤ 2K	0,05K

* Oder Spezial

Tabelle 3 Strom- und Spannungmeßbereiche

Meßbereich	Eingangswiderstand	Genauigkeit	Auflösung (\emptyset)
0-10 Volt	$\approx 110 \mathrm{k}\Omega$	≤ 0,1 %	0,6 mV
0-20 mA	49 Ω (Spannungsbedarf $\leq 2,5$ V)	≤ 0,1 %	1,5 μA

10 Sicherheitshinweise

Dieses Gerät ist gemäß VDE 0411-1 / EN 61010-1 gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Das Gerät stimmt mit der Europäischen Richtlinie 89/336/EWG (EMV) überein und wird mit dem CE-Kennzeichen versehen.

Das Gerät wurde vor Auslieferung geprüft und hat die im Prüfplan vorgeschriebenen Prüfungen bestanden. Um diesen Zustand zu erhalten und einen gefahrlosen Betrieb sicherzustellen, muß der Anwender die Hinweise und Warnvermerke, die in dieser Bedienungsanleitung enthalten sind beachten und das Gerät entsprechend der Bedienungsanleitung betreiben.

Das Gerät ist ausschließlich bestimmt zum Gebrauch als Meß- und Regelgerät in technischen Anlagen.

Warnung

Weist das Gerät Schäden auf, die vermuten lassen, daß ein gefahrloser Betrieb nicht möglich ist, so darf das Gerät nicht in Betrieb genommen werden.

ELEKTRISCHER ANSCHLUSS

Die elektrischen Leitungen sind nach den jeweiligen Landesvorschriften zu verlegen (in Deutschland VDE 0100). Die Meßleitungen sind getrennt von den Signalund Netzleitungen zu verlegen.

In der Installation ist für das Gerät ein Schalter oder Leistungsschalter vorzusehen und als solcher zu kennzeichnen. Der Schalter oder Leistungsschalter muß in der Nähe des Gerätes angeordnet und dm Benutzer leicht zugänglich sein.

INBETRIEBNAHME

Vor dem Einschalten des Gerätes ist sicherzustellen, daß die folgenden Punkte beachtet worden sind:

- Es ist sicherzustellen, daß die Versorgungsspannung mit der Angabe auf dem Typschild übereinstimmt.
- Alle für den Berührungsschutz erforderlichen Abdeckungen müssen angebracht sein.
- Ist das Gerät mit anderen Geräten und / oder Einrichtungen zusammengeschaltet, so sind vor dem Einschalten die Auswirkungen zu bedenken und entsprechende Vorkehrungen zu treffen.
- Das Gerät darf nur in eingebautem Zustand betrieben werden.
- Die für den Reglereinsatz angegebenen Temperatureinschränkungen müssen vor und wärend des Betriebes eingehalten werden.

AUSSERBETRIEBNAHME

Soll das Gerät außer Betrieb gesetzt werden, so ist die Hilfsenergie allpolig abzuschalten. Das Gerät ist gegen unbeabsichtigten Betrieb zu sichern.

Ist das Gerät mit anderen Geräten und / oder Einrichtungen zusammengeschaltet, so sind vor dem Abschalten die Auswirkungen zu bedenken und entsprechende Vorkehrungen zu treffen. **WARTUNG, INSTANDSETZUNG, UMRÜSTUNG UND REINIGUNG** Die Geräte bedürfen keiner besonderen Wartung.

Warnung

Beim Öffnen der Geräte oder Entfernen von Abdeckungen und Teilen können spannungsführende Teile freigelegt werden. Auch können Anschlußstellen spannungsführend sein.

Vor dem Ausführen dieser Arbeiten muß das Gerät von allen Spannungsquellen getrennt sein.

Nach Abschluß dieser Arbeiten ist das Gerät wieder zu schließen, und alle entfernten Abdeckungen und Teile sind wieder anzubringen. Es ist zu prüfen, ob Angaben auf dem Typschild geändert werden müssen. Die Angaben sind gegebenenfalls zu korrigieren.

Achtung

Beim Öffnen der Geräte können Bauelemente freigelegt werden, die gegen elektrostatische Entladung (ESD) empfindlich sind. Die nachfolgenden Arbeiten dürfen nur an Arbeitsplätzen durchgeführt werden, die gegen ESD geschützt sind. Umrüstungen, Wartungs- und Instandsetzungsarbeiten dürfen nur von geschulten fach- und sachkundigen Personen durchgeführt werden. Dem Anwender steht hierfür der PMA-Service zur Verfügung.

Die Reinigung der Gerätefront darf nur mit einem trockenen oder einem mit Wasser oder Spiritus angefeuchteten Tuch erfolgen.

10.1 Rücksetzen auf Werkseinstellung

Für den Fall, dass es zu einer Fehlkonfigurierung gekommen ist, kann das Gerät auf seine Hersteller-Werkseinstellung zurückgesetzt werden.

Zur Einleitung muss der Bediener während des Netzeinschaltens die Inkrementund Dekrement- Taste gleichzeitig gedrückt halten.

- 2 Zur Bestätigung der Ausführung muss über die Inkrement Taste die Auswahl Y E 5 angewählt werden.
- **3** Mit Enter wird zur Passwort-Eingabe weitergeschaltet.
- ④ Nach Vorgabe des gültigen Passwortes wird der Factory-Reset bestätigt und der Kopiervorgang ausgelöst (Anzeige E □ P Y).
- **5** Danach startet das Gerät erneut.

In allen anderen Fällen wird keine Rücksetzung durchgeführt (Abbruch über Timeout).

Ist der Sicherheitsschalter Loc offen, so ist kein Rücksetzen auf die Werkseinstellung möglich.

Index

0-9	
2-Punkt-Korrektur 2	2
Α	
Alarmverarbeitung 10 - 1	1
Anschlußbeispiel	6
Anschlußbild.	5
Ausführungen	3
Ausgang OUT LC	
Technische Daten 2	5
Ausgang OUT1	
Konfigurierung 1	5
Technische Daten 2	5
Ausgang OUT2	
Konfigurierung 1	5
Technische Daten 2	5
Auslieferungszustand 1	2
В	
Bedienstruktur 1	2
BlueControl	4
Ε	
Eingang INP1	
Konfigurierung 1	4
Parametrierung 1	8
Technische Daten 2	5
Eingangs-Skalierung 1	9
Einstellen des Grenzwertes LC	8
Engineering-Tool 1	6
Errorliste	9
Error-Status	0
Erweiterte Bedienebene	8
F	
Frontansicht	7
G	
Gehäuse	6
Н	
Hilfsenergie	6
Κ	-
Kalibrier-Ebene 20 - 2	2
Kalibrierung ($[B]$) 2	$\overline{0}$
Konfigurier-Ebene 13 - 1	6
	0
LC-Alarm 1	0
$L C^{-1} M M M M M M M M M M M M M M M M M M M$	v

LED
°C
°F 7
Err - LED 7
Farben der LEDs 7
Μ
Meßwertkorrektur (ERL) 20
Montage
0
Offset-Korrektur
P
Parameter-Ebene
Passwort
S
Sicherheitshinweise
Sicherheitsschalter 4
Spannungsmeßbereich
Steuereingang di1
Technische Daten 25
Strommeßbereich
Т
Thermoelemente
U
Umgebungsbedingungen
W
Wartungsmanager 9
Werkseinstellung (Rücksetzen) 30
Widerstandsthermometer
Wirkungsweise Grenzwert LC 10
Ζ
Zulassungen
Zusatzalarme
Zusatzgeräte

Subject to alterations without notice Änderungen vorbehalten Sous réserve de toutes modifications © PMA Prozeß- und Maschinen-Automation GmbH P.O.B. 310 229, D-34058 Kassel, Germany Printed in Germany 9499-040-63418 (08/2013)

